
Research Proposal: Improving Communication Between Neurodiverse Pair Programmers
Background: Pair programming, a practice in Agile development and Extreme Programming involving
two programmers coding together, is strongly correlated with reduced defect density, increased developer
satisfaction, and persistence in computer science education [1, 2]. Benefits of pair programming can also
extend to distributed development [3]. Although pair programming is a powerful tool for code quality and
developer happiness and wellbeing, it has lower adoption than one might expect; one study found that only
22% of software engineers had pair programmed, citing personality conflicts as one of three key dissuading
factors [4]. However, standard personality traits have not been found to correlate as strongly with pair
programming productivity as expertise or task complexity [5]. What, then, drives the personality conflicts
that developers cite as dissuading them from pair programming, and are those conflicts surmountable?
Insights from general psychology show that disagreement is well-documented as a primary factor for
cognitive dissonance in groups [6]. This suggests that misaligned understandings may be a bigger source
of friction than personality alone in pair programming. I hypothesize that factors such as social, cultural,
and neurological differences may influence such misunderstandings.

One such strong influencing factor on pair cohesion may be differing neurotypes. Communication
between neurodivergent (e.g., ADHD, autistic) and neurotypical people (i.e., those who have cognitive
processes considered to be the norm in their cultures) is complicated by different social, cultural, and
neurological patterns. For example, the well-cited double empathy theory states that autistic people do not
lack the ability to understand others, but that the differences between them and neurotypical people lead to
pairwise misunderstandings [7]. Additionally, norms for typical workplace communication, such as turn
taking, can be unclear to neurodivergent people, causing them to be unsure of when and how to talk [8]. I
hypothesize that some common conflicts in pair programming, such as disagreements about the relevance
of a variable to a bug [9], could be traced back to miscommunication based on neurotype incongruencies.
Recent research has focused on supporting neurodivergent people, who make up an estimated 15-20% of
the population [10], in the workplace. However, this research has not yet extended to the context of pair
programming.

Proposal: Given that pair programming is an effective practice, but miscommunications based on
neurotype may diminish its effectiveness or adoption, my primary research question is: What
misunderstandings arise in pair programming based on neurotype differences, and how do they affect
program quality and developer happiness? I will place an emphasis on reducing barriers for neurodivergent
developers and other underrepresented groups in software engineering.

I propose an experiment studying misunderstandings arising in mixed neurotype pairs during pair
programming. I will recruit a large number of professional developers from local software companies and
universities, online forums, and by snowball sampling who are neurotypical, have ADHD, or are autistic.
Potential participants will be prescreened to determine their software development and pair programming
experiences, along with their neurotypes. Using these data, I can ensure a mix of the six types of pairs (e.g.,
ADHD-autistic, neurotypical-ADHD, etc.) and control for experience within pairs. Participants will attend
two hour sessions, switching roles as the person at the keyboard (“driver”) and the one giving high-level
direction (“navigator”) [5]. The computer will record participant keystrokes and program runs, and the
study team will record video and take notes on apparent misunderstandings or miscommunications.
Participants will complete a series of previously-validated programming tasks (such as in [5]) capturing
parts of the software development lifecycle (e.g., brainstorming, debugging). In the last 15 minutes of each
session, participants will be separated for a retrospective think-aloud to ascertain their comfort levels,
whether they enjoyed the session, and to point to and explain a timestamp in the video that was just recorded
indicating a misunderstanding they think occurred (if applicable).

Evaluation: To answer my question about which misunderstandings arise between developers of different
neurotypes and how they affect program quality and wellbeing, I will evaluate the data via a rigorous mixed-
methods approach. I will qualitatively code session videos to discover which types of misunderstandings
arise, using an iterative approach and the assistance of a second researcher to assure inter-rater reliability
[11]. Programs produced will be automatically evaluated for functional correctness and other quality
metrics, such as complexity and readability, using established methods (such as in [12]). These metrics and

misunderstanding occurrences will be correlated to neurotype using appropriate statistical tests. My
previous experience with interdisciplinary and mixed-methods analyses, developed in my two human
studies that were published at a top-tier venue in software engineering, leaves me well-positioned to carry
out this analysis. Critically, I will uncover more about whether neurotype mismatches result in worse code,
and how we can ameliorate that by identifying which misunderstandings are most likely during certain
programming tasks.

Extensions: This study will likely permit many follow-on research projects, making it a good long-term
research direction. I am most interested in how individual program comprehension plays a role in pairwise
disagreements about programs. I will identify the most common miscommunication from the main study
and distill it into an individual development scenario (e.g., a concrete code review task). I will use program
comprehension methods to study unpaired developers with different neurotypes during this scenario. Using
the underlying factors of individual comprehension based on neurotype from this extension, as well as the
results from the primary study, I will develop and evaluate a “neurotype-agnostic” framework for
programming-related communication. This framework will assist knowledge transfer and individual
understanding in pair contexts. I will also explore other factors, such as cultural background, which may
play a role in communication conflicts reported by programmers.

This proposal supports my overall research goal of bridging communication and understanding
gaps between neurotypical and neurodivergent developers. Beyond pair programming, software
development is full of complex social structures which admit similar neurotype-driven misunderstandings.
I plan to investigate the effects of mismatched neurotypes across social structures (e.g., a multi-person
team) through observational and controlled experimental studies.

Intellectual Merit: To the best of my knowledge, this would be the first controlled evaluation of the
effectiveness and cohesion of mixed neurotype pairs in pair programming. While previous studies have
uncovered differences in communication about, or understanding of, programming tasks with respect to
neurotype [8], or have evaluated the effectiveness of pairs based on attributes such as personality, attitude,
or gender [5, 13, 14], none have investigated neurotype as a factor in pair composition. There is a growing
body of work finding that neurotype can influence social aspects of software development [8, 15], and since
pair programming is inherently social, my proposal is a desirable extension of previous work. Though this
study plan is ambitious, my experience with interdisciplinary, mixed-methods, and human factors software
engineering research (as demonstrated in my two peer-reviewed publications) positions me to carry it out.
I will also be able to leverage my own experiences with misunderstandings in pair programming contexts,
as a researcher with ADHD (see my personal statement).

Broader Impacts: The insights from my proposed study could substantially inform effective DEI efforts
and help close the neurodivergent underrepresentation gap in software engineering. Tasks core to software
engineering, such as meetings and management, have heightened barriers for neurodivergent programmers
[8, 15]. The “neurotype-agnostic” framework produced by my research could be taught to developers to
create more inclusive software development environments. Additionally, tools produced as a result of my
research could also mitigate known barriers for neurodivergent programmers.

My research could also aid in more extensive and effective deployment of pair programming. As
personality conflicts are cited as a barrier to adoption for pair programming, elucidating and repairing these
personality conflicts may lead to increased use. My work could help software managers match effective
programming teams during parts of the software development lifecycle.

References: [1] A. Cockburn and L. Williams. (2001). [2] C. Mcdowell et al. (2003). [3] D. Stotts et al.
(2003). [4] A. Begel and N. Nagappan. (2008). [5] J.E. Hannay et al. (2009). [6] D.C. Matz and W. Wood.
(2005). [7] D. E. M. Milton. (2012). [8] M. Das et al. (2021). [9] F. Zieris and L. Prechelt. (2020). [10]
National Cancer Institute. (2022). [11] N. McDonald et al. (2019). [12] N. Peitek et al. (2021). [13] L.
Thomas et al. (2003). [14] L. Jarratt et al. (2019). [15] M. Morris et al. (2015).

